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Molecular Mechanisms of DNA Damage
Initiated by ao4-Unsaturated Carbonyl
Compounds As Criteria for Genotoxicity
and Mutagenicity
by Erwin Eder,* Christian Hoffman,* Heinz Bastian,*
Christoph Deininger,* and Sabine Scheckenbach*

OL,,-Unsaturated carbonyl compounds are important not only from a theoretical but also a practical
standpoint. These ubiquitous compounds can interact with DNA through various mechanisms. The pre-
dominant interaction is the formation of cyclic 1,N2-deoxyguanosine adducts; 7,8-cyclic guanine adducts
are also found. We have synthesized and characterized the stereoisomers of adducts formed by about 20
a,ID-unsaturated carbonyl compounds. The different types of adducts and the mutagenic and genotoxic
response can be explained by the molecular structures of the agents. Compounds forming saturated cyclic
adducts are mutagenic in S. typhimurium strain TA100 and to a lesser extent in TA1535. Substances with
a leaving group at the C-3 position form unsaturated conjugated cyclic adducts and are mutagenic only
in the His D3052 frameshift strains with an intact excision repair system (no urvA mutation). Metabolic
epoxidation of the double bond and other metabolic activation, e.g., activation of the nitrogroups via
nitroreductases, were also found to contribute to genotoxic and mutagenic activities. Our results have
further elucidated the genotoxic mechanisms of these compounds; however, additional investigations are
required for a complete understanding of the genotoxic activity of this class of compounds.

Introduction
a,,1-Unsaturated carbonyl compounds are frequently

occurring industrial chemicals and environmental pol-
lutants. The worldwide industrial production of acro-
lein, for example, is estimated to be more than 500,000
tons yearly (1). Some members of this group, such as
ethylvinyl ketone, are found in fruits and vegetables
and in other foodstuffs (2). Others such as acrolein are
formed during biological processes, for instance, in the
formation of humic acid. Furthermore, acrolein and its
congeners are combustion products found in consider-
able amounts in automobile exhausts, tobacco smoke,
and flue gases (3). Some of them are produced during
the preparation of foods. a,,B-Unsaturated carbonyl
compounds are also used as pesticides or formed as deg-
radation products of pesticides (4,5). Since our group
first published structure mutagenicity relationships for
these compounds (6-8), many other studies have con-
firmed that these compounds are mutagenic (9-11). Cro-
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tonaldehyde has been found to induce liver cancer in
rats (12), and it should be considered as a potential
human carcinogen.
The formation of cyclic 1,N2-deoxyguanosine adducts

has been reported (13-15) and could at least in part be
responsible for the mutagenic activity and genotoxic
effects as expressed in the induction of the sfiA function
in the SOS Chromotest. To date all data published are
consistent with the assumption that this widespread
class of compounds represents a potential risk to human
health. The diverse testing protocols do not, however,
allow uniform interpretation of the underlying mecha-
nisms.

In spite of a common structural feature, a,,B-unsat-
urated carbonyl compounds can undergo different in-
teractions with DNA, which lead to different genotoxic
and mutagenic responses. The following genotoxic
mechanisms are conceivable: formation of cyclic ad-
ducts, frameshift interaction, strand breaks, and cross-
linking. In addition to direct interactions, other meta-
bolic activations are conceivable, such as metabolic
epoxidation and formation of radicals or activation of
nitro groups or amino groups. The purpose of our stud-
ies is to provide a better understanding ofthe genotoxic,
mutagenic, and possible carcinogenic activities of this
class of compounds.
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Materials and Methods
Chemicals
The chemicals, biochemicals, and reagents used were

purchased in the highest purity available from Merck
(Darmstadt, FRG), Serva (Heidelberg, FRG), Roth
(Karlsruhe, FRG), or Boehringer (Mannheim, FRG).
The a., 1-unsaturated carbonyl compounds were either

bought or synthesized according to the literature or our
own methods. All synthesized compounds were char-
acterized by spectroscopic methods, in particular by
NMR spectroscopy, and checked for purity by gas chro-
matography or HPLC. The substances tested in the
SOS Chromotest and Ames test were carefully purified
immediately before use and in general had purities
greater than 99.5%.

Synthesis of Adducts
1,N2-Cyclic deoxyguanosine adducts and 1,N2-cyclic

deoxyguanosine 5'-monophosphate adducts were syn-

Table 1. Chemicals that form type I adducts.

Number of
Type of constitution adducts

Compound isomers identified
Acrolein 2 regioisomers 3
Crotonaldehyde 1 regioisomers 2
Methacrolein 2 regioisomers 5
Pentenal 1 regioisomers 2
Hexenal 1 regioisomers 2
3,3-Dimethylacrolein 1 regioisomers 1
a-Chloroacrolein 2 regioisomers 6
os-Bromoacrolein 2 regioisomers 6
Methylvinyl ketone 1 regioisomers 2
Ethylvinyl ketone 1 regioisomers
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thesized by reaction of the respective a, ,B-unsaturated
carbonyl compound with deoxyguanosine in phosphate
buffer or dimethylsulfoxide. After separation from pol-
ymers on a Sephadex LH20 column, the stereoisomers
were isolated via MPLC/HPLC on a RP18 column using
methanol/water as eluant and characterized using 1H-
NMR, 13C-NMR spectroscopy, mass spectrometry, and
3-D-fluorescence spectroscopy. The NMR spectra of the
acrolein adducts are shown as representative examples
in "Results." The corresponding 5'-deoxynucleotides
were synthesized and characterized as described by
Hoffman et al. (15).
To synthesize unsaturated 1,N2-cyclic guanine ad-

ducts, guanine (deoxyguanosine) was treated with a 3-
fold excess of the respective a, 3-unsaturated carbonyl
compound in 0.2 N HCI solution at 60°C. After the end
of the reaction the mixture was neutralized with 1 N
NaOH, and the adducts were precipitated. The tricyclic
adducts were purified via MPLC chromatography using
an RP18 column and water/methanol (80:20) as eluant.

Mutagenicity and Genotoxicity Testing
The preincubation Salmonella test according to Maron

and Ames (16) was used as described previously (17).
In a few cases a modification of the liquid assay accord-
ing to Rannung et al. (18), as described elsewhere (19),
was also carried out.
The SOS Chromotest using E. coli strain PQ37 was

performed according to Quillardet and Hofnung (20) as
previously described (21). The method used for the SOS
Chromotest with E. coli strain PM21 was described
recently (22).
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FIGURE 1. (A) HPLC of deoxyguanosine cyclic nucleosides Ia, b, and c with acrolein. Separation on a RP18 column, length 25 cm, internal
diameter 4 mm, eluted with MeOH/H20, 11/89 isocratic at a flow rate of 1 mL/min. Wavelength of the UV detection was 254 nm. (B) HPLC
of deoxyguanosine cyclic 5'-nucleotides Ia, b, and c. Conditions: Supelco LC18 column, 10 min isocratic with sodium acetate, pH 5.3, 50
mM, then 30 min with a gradient 0-50% MeOH at a flow rate 1 mL/min; photo diode array. (C) Same conditions as in B, however, enlarged
scale from 25-27 mins.
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FIGURE 2. (A) 'H-NMR spectra of acrolein adducts Ia and b (400 MHz) and Ic (250 MHz) using hexadeutero DMSO (DMSOd6) as solvent
and tetramethylsilane (TMS) as internal standard. (B) "3C-NMR spectra of acrolein adducts Ia and b (100 MHz) and Ic (62.5 MHz), DMSOd6,
and TMS as internal standard.

The method used for DNA binding studies in bacteria

has been described previously (23).

Results
From our results, we can distinguish at least five main

types of a,,-unsaturated carbonyl compounds. The re-
sults are presented here in preliminary form and will
be published in detail in forthcoming papers.

Substances Forming Saturated 1,N2-
Deoxyguanosine Adducts
We have synthesized and characterized the stereo-

isomers of deoxyguanosine adducts of 11 a,1-unsatu-
rated carbonyl compounds and their corresponding 5'-
deoxynucleotides [Eq. (1)]. An overview is given in Ta-
ble 1. The chromatographic and NMR-spectroscopic
data of the acrolein adducts are given as an example in

8) 13C-NMR

adduct la.b
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Table 2. Mutagenicity and genotoxicity of type I au,-unsaturated carbonyl compounds.

Mutagenicity in Genotoxicity,
Compound TA100, revertants/,umole SOSIpa
Acrolein 2,400 6.8 x i0-4
Crotonaldehyde 257 7.3 x 10-3
Methacrolein 184 0
Pentenal 89 (NS)C 0
Hexenal 65 (NS) 0
3,3-Dimethacrolein 78 (NS) 4.8 x 10-4
Methylvinyl ketone 472 7.3 x 10-3
2-Chloroacrolein 1,512,571 11.20
2-Chloro-3-methylacrolein NDd 5.92
2-Chloro-3,3-dimethylacrolein 38,344 0.08
2-Bromoacrolein 1,236,534 25.2

a SOSIP, SOS inducing potency according to the definition of Quillardet and Hofnung (20).
b Imax, maximal SOS induction factor (20); genotoxicity is significant at Imax S 1.5.
'NS, not significant.
d ND, not determined.
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FIGURE 3. Three-dimensional fluorescence spectra of cyclic adducts produced by reaction of 2'-deoxyguanosine with 3-chloro-2-methylacrolein
(a) and 2-chloroacrolein (b) registered on a Hitachi 650-40 fluorescence spectrophotometer combined with an Atari 520 ST computer using
a self-designed computer program. Excitation maximum of (a) 321 nm, emission maximum 514 nm. Excitation maximum of (b) 235 and 305
nm, emission maximum 350 nm.
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FIGURE 4. (A) 1H-NMR spectrum, 200 MHz, of the guanine adduct of 3-chloro-2-methylacrolein in DMSOd6 and TMS as internal standard.
(B) "3C-NMR spectrum, 100 MHz, of the guanine adduct of 3-chloro-2-methylacrolein in DMSOd6 and TMS as internal standard.
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Figures 1 and 2. Besides the 1,N2-cyclic adducts, trace
amounts of 7,8-cyclic guanine adducts have also been
detected in these studies. These type I compounds are
mutagenic in the His G46 strain TA100 and to a lesser
extent in TA1535, and they induce the sfiA function in
the SOS Chromotest (Table 2). 2-Chloro and 2-bromo
substituted congeners are extremely mutagenic in
TA100.
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Compounds Forming Conjugated
Unsaturated Cyclic 1,N2-Guanine Adducts

a,01-Unsaturated carbonyl compounds that possess a
leaving group at the C-3 position of the acrolein moiety
form conjugated adducts according to Equation (2).
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We have synthesized and characterized se
of this type. The spectroscopic data of the:
of 3-chloro-2-methylacrolein are presentec
ample (Figs. 3 and 4). In contrast to the sa
ducts, these conjugated unsaturated adducl
strong fluorescence. Therefore, these adduc
easily detected in biological material via HI
fluorescence detector. We could isolate and
respective adduct of 3-chlorocrotonaldehyd
terial DNA after incubating a bacterial susp
this substance.
These type II compounds are mutagenic

D3052 frameshift Salmonella strain containi
excision repair system, but they are nege
frameshift strains TA1538 and TA98 and al
in the His G46 strains TA1535 and TA100.
substituted compounds, e.g., 3-chloro-2-n
lein, show only borderline activity in strain

(Table 3). Nearly all the compounds tested, even those
possessing poor leaving groups (alkoxy groups), induce
the sfiA function in the SOS Chromotest (Table 3).

Other Compounds
Evidence has been found that a,,B-unsaturated ke-

tones such as methylvinyl ketone or ethylvinyl ketone
are activated to epoxides (2,24). Although the specific
mutagenicity (revertants per ,umole) are not higher, the
peak revertant rate is clearly higher in the presence of
S9 mix than in its absence. Addition of SKF 525, an
inhibitor of monooxygenases, led to a loss in mutagen-
icity, whereas addition of TCPO (trichloropropene ox-
ide), an inhibitor of the epoxide hydrolases, resulted in
an increase in mutagenicity.

2-Chloro- and 2-bromocinnamaldehydes do not form
cyclic adducts although they are highly mutagenic in
the strains TA100, TA98, and TA1538, but not in
TA1535, and these compounds are also positive in the
SOS Chromotest. The relatively high mutagenicity and
genotoxicity of 2-bromocinnamaldehyde, which is about
20 times higher than that of acrolein, is remarkable.
Cinnamaldehyde and its derivatives, which are substi-
tuted at the phenyl ring, e.g., p-chlorocinnamaldehyde
or o-methoxycinnamaldehyde, do not show any muta-
genic or genotoxic activities.
Cinnamaldehydes containing nitro groups are evi-

dently metabolically activated via the nitro groups (Ta-
ble 4). p-Nitrocinnamaldehyde and p-nitrocinnamic acid
are highly mutagenic in TA100 strains containing ni-
troreductase but not mutagenic or only poorly muta-
genic in such TA100 strains that lack nitroreductase
activity, e.g., TA100 TN5 DNP6 or NR TA100. The
fact that the acid as well as the aldehyde are mutagenic
strongly suggests that the formation of cyclic adducts
is not responsible for this mutagenicity.

Discussion
!'b (2) The predominant interaction of a, 1 unsaturated car-

ven adducts bonyl compounds with DNA components is the forma-
1 N2-adduct tion of cyclic adducts. Two different types of adducts
as an ex- are formed. The absence or presence of a suitable leav-

Lturated ad- ing group at the C-3 position of the acrolein moietyts possess a decisively determines the mutagenic response. It is re-
ts shouldsbe markable that these rather small differences in the
'LC using a structure (Fig. 5) of the molecule produce marked dif-
i detect the ferences in mutagenicity.
le from bac- Compounds of type I are mutagenic in His G46 S.
ension with typhimurium strains. A lack of excision repair (uvr mu-

tation) and the presence of the pkMlOl plasmid (error
2 in the His prone repair) increases markedly the sensitivity of the
ng an intact His G48 strains toward the type I compounds. In con-
ative in the trast, the type II compounds, showing frameshift ac-
[so negative tivity in His D3052 strains, require an intact excision
The 2-alkyl repair system for the induction of back mutation. Basu
nethylacro- and Marnett (9) have explained this effect by the high
i His D3052 toxicity of these type ofcompounds toward the bacteria,
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Table 3. Mutagenicity and genotoxicity of 3-chloro- and 3-ethoxyacroleins.

GenotoxicityinMuaeitynthe SOS Chromotest His D3052c
Acrolein compound Structure SOSIPa Imaxb revertants/,mole
3-Chloroacrolein cl 5.8 x 10-4 1.25 NDc

0

3-Chloro-2-methyl-acrolein Cl CH 0 1.00 0

0
3-Chloro-3-methyl-acrolein CL 3.5 x 10-3 1.60 184 (S9-)

123 (S9+)
H3C

3-Ethoxy-2-methyl-acrolein H5C OCH 9.94 x 10-4 1.81 NSd

3-Ethoxy-2-propyl-acrolein 2.4 x 1O-3 2.73 NS
H5c2 0 n-C3H7

3-Ethoxy-2-pentyl-acrolein H C C 1H 8.26 x 10-3 1.71 0

2,3-Dihydro-4H-pyran-5-carbaldehyde -0 4.4 x 10-3 5.01 13/1L
0

a SOSIP, SOS inducing potency according to the definition of Quillardet and Hefnung (20).
b I,, maximal SOS induction factor (20).
c ND, not determined.

Table 4. Mutagenicity in S. typhimurium TA100 and genotoxicity in the SOS Chromotest of nitrocinnamaldehyde and related
compounds.a

TA100 TA100 TN5 DNP6 NRTA100
Substances - S9 + S9 - S9 + S9 - S9 + S9 SOS Chromotest
p-Nitrocinnamaldehyde + + + + NS + + NS + + + +
o-Nitrocinnamaldehyde + + ND ND ND ND +

p-Nitrocinnamic acid + + + + + + + + + + + +
o-Nitrocinnamic acid - - ND ND ND ND +

a ( + +) Strong positive; (+) postive; (-) negative; NS, not significant; ND, not determined.

which survive only if they possess an excision repair
system.
A further interesting point is the extremely high mu-

tagenicity of 2-bromo- and 2-chloro-substituted conge-
ners in the His G48 strains TA100 and TA1535. These
results demonstrate that the mutagenicity of the type
I compounds does not depend exclusively on the pkMlOl
plasmid-mediated error prone repair but, at least in
some cases, also depends on base pair substitution. It
is, however, not yet clear whether and to what extent
other processes in addition to binding at GC hot spots
are involved, e.g., second site mutations.
The reason for the enormous mutagenicity-enhancing

effect of the chlorine or bromine substituents in position
2 of the acrolein moiety presently remains unclear. It

is, however, remarkable that such substituents at either
the C-2 or the C-3 position of the acrolein moiety
strongly influence the type of mutagenic response as
well as the strength of mutagenicity. Whereas in the
case of type 1 compounds it is most likely that formation
of cyclic adducts leads to mutagenicity and genotoxicity,
in the case of the type II compounds a clear relationship
between formation of adducts and frameshift mutagen-
icity is not clear. Several other interactions such as
strand breaks or the formation of crosslinking are also
conceivable. These possibilities are now under investi-
gation in our laboratory. Nevertheless, formation of
DNA adducts is a clear indicator of genotoxicity, mu-
tagenicity, and presumably carcinogenicity. There is a
strong correlation between the type of adducts formed
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FIGURE 5. Structural requirements for type of mutagenicity.

in vitro and the type of mutagenic/genotoxic response.
Therefore, more sensitive methods must be developed
that allow the detection of adducts from biological stud-
ies such as the 32P-postlabeling HPLC technique or the
monoclonal antibody technique.

In addition to type I and type II compounds, there
are other a,,3-unsaturated carbonyl compounds that
may act by different mechanisms. A possible mechanism
is the epoxidation of the double bond via monooxygen-
ases. We have found evidence for an epoxidation only
for a, n-unsaturated ketones, e.g., methylvinyl ketone
(24) or ethylvinyl ketone (2). It should, however, be
noted that these ketones are mutagenic per se as type
I compounds and that reactions of the epoxides are in-
volved additionally.
When investigating 2-chloro- and 2-bromocinnamal-

dehyde, cyclic adducts were not formed although these
compounds are highly mutagenic in S. typhimurium
TA100, TA98, and TA1538, but not in TA1535. Due to
the conjugation of the aromatic system of the phenyl
group with the a, a-unsaturated rT electron system, a
frameshift interaction of these compounds is conceiv-
able, although their structures are different from the
classical intercalators such as acridine dyes. An inter-
calating effect has been proposed for the p-methoxy-
phenyl moiety of puromycin intercalating between two
adenines (25).

Nitrocinnamaldehydes and nitrocinnamic acids can
evidently be activated via their nitro groups. We found
an interesting structure mutagenicity relationship: p--
nitrocinnamaldehyde and p-nitrocinnamic acid showed
high mutagenic activities in strain TA100 (possessing
nitroreductases) without addition of metabolizing en-
zymes (S9 mix). When using TA100 strains lacking ni-
troreductase activity, the compounds exerted muta-
genic activities only in the presence of S9 mix. o-
Nitrocinnamaldehyde was only slightly mutagenic in
strain TA100 in the absence of S9 but clearly mutagenic
in the presence of S9 mix, whereas o-nitrocinnamic acid
was nonmutagenic irrespective of the presence or ab-
sence of S9 mix.
A question which to date has not been addressed is

the role of radical formation (radicals are possibly
formed in the reductive metabolism of halosubstituted

acrolein congeners via the monooxygenases) and the
production of reactive oxygen species, which may also
contribute to the genotoxicity of these compounds.
Although our investigations and those of others have

elucidated the relationship between structure, inter-
action mechanism, and genotoxic activities, many as-
pects of the genotoxicity of the a,,1-unsaturated car-
bonyl compounds are still not entirely understood and
deserve further investigation.
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